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Sonochemical fluorination of heterocyclic nitro
compounds with Selectfluorq
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Abstract—Methine and methylene groups attached to a nitro function and heterocycle (and Ph for CH) were rapidly mono- or
di-fluorinated by reaction with 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2,2,2]octane bis-tetrafluoroborate (Selectfluor) in the
presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), preferably with ultrasonic irradiation.
� 2006 Elsevier Ltd. All rights reserved.
Incorporation of fluorine selectively into organic mole-
cules has provided a challenge to academic and indus-
trial research.1–3 Electrophilic sources of fluorine have
been developed for introducing fluorine at centres of
high electron density, and offer alternative strategies,
where nucleophilic and free radical sources of fluorine
have proved inefficient or have failed. Reagents used
as a source of ‘F+’ include acetyl hypofluorides,4 N-flu-
oroperfluoropiperidine,5 dihydro-N-fluoro-2-pyridone,6

N-fluoro-N-alkylsulfonamides,7 N-fluoropyridinium
salts,8 N-fluoroquinuclidinium salts,9 1-fluoro-substi-
tuted 1,4-diazoniabicyclo[2.2.2]octane salts,10 1,4-diflu-
oro-1,4-diazoniabicyclo[2.2.2]octane salts,11 1,10-difluoro-
bipyridinium salts,12 trifluoroamine oxide13 and
1-fluoro-2,4,6-trichloro-1,3,5-triazinium tetrafluoro-
borate.14

Reactions of carbanions with N-F reagents are generally
easier than those with neutral nucleophilic substrates.
Thus, fluorination of carbanions adjacent to CO,15–18

CS,19 COOR,16,17 RSO2,20,21 NO2,22 CN,8 PO(OR)2

has been reported,23 although the N-F reagent 1-chloro-
methyl-4-fluoro-1,4-diazoniabicyclo-[2,2,2]-octane bis-
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tetrafluoroborate (Selectfluor) has also been shown to
react with (E)-stilbene24 and saturated hydrocarbons.25

Electrophilic fluorination of carbanions within the side
chains of imidazoles and indoles has been accom-
plished.26,27 Recently, Peng and Shreeve reported the
fluorination of carbanions from several nitro and cyano
compounds using Selectfluor.28 Most of these reactions,
which utilised, for example, potassium hydroxide as
base for the nitro compounds, gave mainly products of
mono-fluorination.

In this letter we report fluorination of various nitro
compounds under two sets of reaction conditions: one
consisted of stirring the nitro compound for 4–6 h in
the presence of DBU and 1-chloromethyl-4-fluoro-
1,4-diazoniabicyclo[2,2,2]octane bis-tetrafluoroborate
(Selectfluor) (Scheme 1); the other conditions employed
ultrasonic irradiation in the presence of ammonium ace-
tate as a base and again using Selectfluor (Scheme 1).29

The latter conditions gave a dramatic acceleration for
mono- and di-fluorination and led to high yields of
products (Table 1). Ultrasonic irradiation therefore
provides the best conditions for the preparation of
NO2
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Scheme 1. Reagents and conditions: (i) DBU, Selectfluor, CH2Cl2; 4–
6 h, rt; (ii) ))), CH3COONH4, Selectfluor, MeOH, 10–15 min, rt (n.b.
all chiral compounds were racemic).
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Table 1. Side-chain fluorination of selected heterocyclic compounds

Entry Nitro compound Product 19F NMR (ppm) Yield (%) (time/h)a,c Yield (%) (time/min)b,c

1
N

NO2
N

NO2

F F

�87.53 50 (4) 97 (10)

2

N
NO2

Cl

N
NO2

F F

Cl

�87.89 55 (4) 98 (10)

3

N
NO2

Ph
Me

N
NO2

F F

Ph
Me

�81.00 50 (5) 98 (10)

4

N

NO2

N

NO2
F

F
�83.76 60 (4) 96 (10)

5

N
NO2 N

NO2

F F

�79.59 85 (4) 98 (10)

6 N
NO2

N
NO2

F
F �89.03 54 (4) 95 (15)

7 N
NO2

H
Ph N

NO2

F
Ph �113.07 10 (6) 20 (15)

8 N
NO2

H
Ph N

NO2

F
Ph �109.27 10 (6) 25 (15)

9
S

N NO2

S

N NO2

F
F �82.32 50 (5) 96 (10)

a Conditions: (i) DBU, Selectfluor, CH2Cl2.
b Conditions: (ii) )))), Selectfluor, CH3COONH4, MeOH.
c Isolated yield of spectroscopically characterised pure compound.
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mono- and di-fluoro nitro compounds in a short time
and in high yield.

In conclusion, the use of ultrasound enabled the easy
preparation of organofluorine compounds containing
the little investigated CF2NO2 group. The advantages
of ultrasound in fluorination are shorter reaction times
and higher yields. Further chemistry and applications
of the CF2NO2 group will be reported elsewhere.
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